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ABSTRACT The topographical information of a weld seam bears information about quality relevant 

characteristics such as humping or spatter. Optical coherence tomography (OCT) can be used for inline 

scanning the weld topography coaxially mounted at a laser scanning optic. Feature extraction from this 

topographical information is challenging due to finding mathematical representations for the identification of 

relevant features. Feature extraction based on scalable hypothesis tests (FRESH) allows for feature extraction 

by a combination of various time series characterization methods. FRESHs feature selection is supported 

with an automatically configured hypothesis test and hence allows for quick extraction of significant features 

from sensing data in laser welding processes. In this work, a proof-of-concept is demonstrated for weld result 

categorization from OCT data by feature extraction using the FRESH algorithm. Changes in weld topography 

are characterized in a vast variety of process parameters for weld categories such as spatter, deep penetration 

welding, humping and heat conduction welding. As a result, a quantified separation of weld categories is 

possible and shows the feasibility of the FRESH algorithm for future quality assessments with different 

sensing technologies in laser welding. 

INDEX TERMS classification, copper, FRESH, interferometry, laser welding, machine learning, OCT, 

optical coherence tomography, process control, process monitoring, surface topography

I. INTRODUCTION 

Laser welding of copper gains relevance in an increasing 

number of applications in e-mobility solutions. The physical 

properties of copper make laser welding a challenging task. 

Different weld seam inhomogeneities are possible which 

reduce the quality of the weld. Requirements and 

recommendations on quality levels for imperfections can be 

defined according to ISO 13919-2:2021 [1]. These 

imperfections can be classified into surface imperfections 

and internal imperfections. 

Internal imperfections such as pores are originated in 

instabilities of the vapor capillary [2, 3]. Pores can be 

generated if the pressure in the vapor capillary does not 

expell the load of the molten metal [4]. Melt ejections in form 

of spatter can occur if the pressure in the vapor capillary 

exceeds the load of the molten material [4]. Spatter is a 

surface imperfection that can result in underfill or craters. 

Another surface imperfection is an unregular seam 

topography with excess weld metal. This type of 

imperfection can be based on humping. Humping is a process 

phenomenon that appears as a regular drop formation due to 

fluid flow instabilities [5]. Humping occurs at the border 

from deep penetration welding to heat conduction welding. 

Heat conduction welding differentiates from deep 

penetration welding due to local heating and melting on the 

surface of the workpiece without the generation of a vapor 

capillary [6]. This results in weld seams with a bigger weld 

width than weld depth. 
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In conclusion, the resulting solidified weld seam shows 

different seam topographies depending on the fluid dynamics 

in the molten material and pressure in the vapor capillary. 

This should allow for a classification of different weld 

inhomogeneities, and weld regimes based on the topography 

of the weld seam.  

Optical coherence tomography (OCT) is an 

interferometric measurement technology that enables the 

inline measurement of weld seam topography coaxially to 

the processing laser in a scanning optic [7-11]. For instance, 

Hartung et al. [11] combined an OCT with external high-

speed video camera measurements for the identification of 

spatters which represent height deposits on the workpiece 

surface. However, the height information by OCT data was 

only used to support the labeling of camera images in the 

training process of a neural network. Stadter et al. [10] 

showed correlations between in-process weld depth 

measurements with OCT and the weld seam surface 

topography with a machine learning approach. The authors 

evaluated the height profile along the weld center by using 

discrete wavelet decomposition. This approach enabled a 

quantification of the height measurement for a 

characterization of the weld seam surface. Preliminary 

analyses were necessary to identify a wavelet decomposition 

by a level 5 approximation as suitable. In this term, the 

number of peaks was counted to classify in good and poor 

welds depending on the weld depth. This approach for 

classification lacks objective criteria for the classification of 

weld seam inhomogeneities.  

Even though, deep neural network architecture can be 

efficiently applied for the classification in good and poor 

welds for quality control and can solve prediction problems 

[12, 13], deep neural networks do not facilitate information 

extraction [14]. Feature creation followed by a feature 

analysis helps to determine the driving features of the system 

and information further used for deriving physics knowledge 

[14]. Feature engineering tools like tsfresh [15], tsfeatures 

[16], and hctsa [17] enable an automated feature extraction 

and hence the identification of objective criteria for the 

classification of weld seam inhomogeneities. A benchmark 

of these tools can be found in literature [18]. 

Feature extraction based on scalable hypothesis tests 

(FRESH; Python package: tsfresh) allows for feature 

extraction by a combination of various time series 

characterization methods specifically designed for time-

series data sets (e.g., height profile data) [15, 19]. FRESH’s 

feature selection is supported with an automatically 

configured hypothesis test and hence allows for quick 

extraction of significant features from sensing data in laser 

welding processes.  

In this work, a proof-of-concept is demonstrated for weld 

result classification from topographical OCT data by feature 

extraction using the FRESH algorithm. In this report, we 

investigate a vast variety of laser parameters for the 

separation of laser welding regimes between heat conduction 

and deep penetration welding, humping, and spatter 

occurrence based on surface topographical information from 

OCT measurements. Features are selected with the help of 

the FRESH algorithm and discussed for classification 

applicability under consideration of process knowledge. 

Finally, a proof-of-concept is given to approve the 

applicability of the FRESH algorithm for the identification 

of features from weld surface information according to 

process results in laser welding. 

 
II. EXPERIMENTAL METHODS 

A. EXPERIMENTAL SETUP 

The experimental setup consists of a programmable scanning 

optic with cross-jet, processing laser with fiber, and OCT 

device (see Fig. 1). The laser welding process is performed 

using a continuous wave disk laser (Trumpf TruDisk 6001) at 

a wavelength of 1030 nm with a maximum average power of 

6000 W. The laser light is coupled into programmable 

focusing optics (Trumpf PFO 33-2) with the help of a fiber 

(core diameter 100 µm). The focusing optic has a focal length 

of 255 mm and results in a laser spot diameter of 170 µm. The 

scanning optics consist of galvanometer scanners. These allow 

for scanning in an elliptical field of 90 × 50 mm. The OCT is 

attached to the programmable focusing optics and hence 

enables a coaxial positioning of the measurement beam. The 

OCT is an SD-OCT with a superluminescent diode with a 

central wavelength at 840 nm and a bandwidth of 40 nm. The 

measurement beam is detected on a 2048-pixel line sensor 

with a maximum measurement frequency of 70 kHz. The 

OCT system has an axial resolution of 12 µm (z-direction) and 

the lateral resolution is 25 µm (y-direction). 

 

FIGURE 1. Experimental setup consisting of OCT (yellow), processing 
laser delivered by a laser fiber and programmable focusing optics with 
cross-jet (a). Exemplary OCT image of the weld seam with artifact 
components (yellow) and weld seam topography (green) with reference 
line (blue) in region of interest (ROI; red) (b). 

B. EXPERIMENTAL PROCEDURE 

The workpiece (pure copper Cu-OF; 70 × 30 × 5 mm3) is 

mounted in the focus position. The weld seam length is 60 mm 

(bead-on-plate). The OCT measurement line has a length of 

2 mm with 200 measurement points, whereby the OCT 

measurement line is orientated perpendicular to the weld seam 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3208877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2022  

and scanned with 12 mm/s along the weld seam after the 

welding process in the x-direction (see also Fig. 1). These 

parameters enable a resolution of 42 µm in the x-direction. 

Processing parameters are varied by average laser power and 

welding speed. The average laser power is varied from 2000 

up to 6000 W with 1000 W steps. Welding speed is varied in 

a range from 2 m/min up to 100 m/min (see Table 1). 

Measurements are repeated three times for each set of 

parameters. Results are included from 309 experiments. 

Parameters that did not result in a welding process are 

excluded from the study (e.g., cutting, no melting of the 

workpiece). 

 
TABLE I 

LASER PROCESS PARAMETERS 

Process parameter Set of parameters Unit 

Average laser power 6000, 5000, 4000, 3000, 2000 W 

Welding speed 
100, 90, 80, 70, 60, 50, 40, 30, 20, 

15, 10, 8, 6, 4, 2 
m/min 

Focal diameter 170 µm 

Focus position 0 mm 

 

C. DATA PROCESSING 

The data processing of the OCT data follows three steps. 

These steps are the categorization of process results, pre-

processing of OCT data as well as feature extraction and 

selection (see Fig. 2).  

In the beginning, manual categorization of process 

parameters is necessary. Three categories are differentiated: 

spatter, humping, and desired welding regime (see Fig. 2; Step 

1). Internal defects like pores and weld depth fluctuations are 

not specifically evaluated. Preliminary tests with X-ray 

analysis at a resolution of 69 µm have shown that these defects 

are often accompanied by spatter events for the given set of 

parameters. These findings are supported by literature [2]. 

Spatter events are chosen for categorization as spatter clearly 

indicates changes in surface topography. The number of 

spatters is counted manually with the help of the existing OCT 

data and offline microscopy images. Here, height depositions 

and underfill are attributed to spatter events. Humping is 

determined with visual inspection and metallographic 

analysis. Heat conduction welding is separated from deep 

penetration welding by the calculation of the aspect ratio 

between weld depth and weld width. Weld width and depth 

are determined by metallographic analysis for the set of 

parameters.  

After labeling the process parameters into categories, OCT 

data must be processed for applicability to the FRESH 

algorithm (see Fig. 2; Step 2). First, a region of interest (ROI) 

is applied to crop individual OCT images to avoid influence 

by image artifacts and improve processing speed. The ROI is 

in the size of 320  172 pixels [z  y]. The size of the ROI in 

y-direction results from excluding 14 pixels at the beginning 

and the end of the measurement line to avoid unnecessary 

processing time and measurement information from the 

turning point of the scanned measurement beam. The size of 

the ROI in z-direction is the consequence of maximum and 

minimum measured height. Afterward, the 2D image data is 

compared to a reference column according to the reference 

height at the zero coordinate of the programmable focusing 

optic (x = 0). This processing step is necessary because the 

optical path difference changes slightly at different positions 

within the programmable focusing optic. In the following step, 

FIGURE 2.  Data processing steps for the classification task. Step 1 with the categorization of process results in 
spatter, humping and corresponding weld regime. Step 2 focuses on pre-processing of OCT data with artifact reduction 
by setting a ROI, eliminating the influence of chromatic aberration by leveling and 1D reduction of the 2D data. Step 3 
applies the feature extraction and selection with the FRESH algorithm before selected features are analyzed. 
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the 2D OCT data requires a dimensional reduction. Two 

different dimensional reductions are performed. First, the 

image data is reduced to a heat map for an intuitive 

representation of the surface topography. Second, the image 

data is reduced to a height profile for further processing with 

the FRESH algorithm. For the latter, the absolute maximum 

height gradient value h of each 2D height profile is extracted. 

These values are combined into a height gradient vector that 

contains the absolute maximum height value of each image 

frame. The height gradient vector represents a time series with 

surface topographical information which contains information 

about the weld characteristics.  

A feature represents a measurable characteristic of the time 

series. The identification of relevant features is performed in 

Step 3 with the FRESH algorithm (see Fig. 2; Step 3). FRESH 

is an open-source code in a Python package called tsfresh that 

allows feature extraction based on scalable hypothesis tests. 

This package applies feature extraction, hypothesis tests, and 

a multiple testing procedure to improve finding significant 

features. Feature extraction is performed with 63 time-series 

characterization methods, which calculate 794 time-series 

features with established feature mappings (e.g., mean, 

median, etc.). The extracted features are summarized in a 

feature matrix. Afterward, each feature Xi is evaluated with 

respect to its significance for predicting the target Y (e.g., 

humping). Therefore, each feature Xi is statistically tested to 

check the following hypotheses [19]: 

𝐻0
𝑖 = {𝑋𝑖𝑖𝑠 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑌}, 

𝐻1
𝑖 = {𝑋𝑖𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑌}. (1) 

As a result, p-values are calculated for each hypothesis test 

𝐻0
𝑖  to quantify the probability that feature Xi is irrelevant for 

predicting the target Y. The smaller the p-value, the higher the 

relevance of a specific feature to predict the target under 

investigation. Generally, a p-value can be considered as 

statistically significant in the order of 0.05 or lower. Afterward 

multiple hypothesis testing is applied to identify relevant 

features. The significance of each feature is based on 

nonparametric hypothesis tests (Fisher test, Kolmogorov-

Smirnov test, Kendal rank test) which are chosen depending 

on the feature/target to be binary/continuous. The comparison 

of multiple hypotheses and features leads to an accumulation 

of errors. The Benjamini-Yekutieli procedure reduces this 

error by controlling the false discovery rate (FDR) and telling 

which hypotheses need to be rejected [19]. 

In the end, the features with the lowest p-values are selected. 

These features are evaluated with regard to their capability for 

the classification task. The most suitable features are presented 

in the following results and are discussed for their applicability 

for weld process categorization under consideration of process 

phyiscs. 

III. RESULTS AND DISCUSSION 

The goal of this study is the methodical identification of 

features that enable the classification of weld status based on 

surface topographical information from the weld seam without 

losing process knowledge. Three categories are subject to this 

analysis: spatter, humping, and desired weld regime. Each 

category describes the process result under investigation and 

evaluates the applicability of the chosen feature under 

consideration of process physics. In the end, a proof-of-

concept shows the feasibility of FRESH for the identification 

of relevant features for weld status classification in the case of 

quality monitoring. 

A.  WELD REGIME CLASSIFICATION 

The separation of weld regime between deep penetration 

welding and heat conduction welding can give an insight into 

reaching a certain weld depth. In heat conduction welding a 

smaller weld depth than weld width is achieved (see Fig. 3 top 

left). During deep penetration welding, the vaporization 

FIGURE 3.  Results for weld regime classification. At the top of (a) and (b), cross-sections (top left) and top views (top right) are shown for an 
exemplary heat conduction weld (a) and an exemplary deep penetration weld (b). At the middle section of (a) and (b) corresponding heat maps show 
the 2D height profile at reference level (green) with height deposits (yellow, red) and voids (blue) as a distance from the reference line in pixel. This 
measurement information is transformed into a 1D height profile for heat conduction welding (a) and deep penetration welding (b). (c) shows the 
identified feature for weld regime classification (autocorrelation lag 2) based on the given 1D height profile data from all included laser process 
parameters. 
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temperature is reached, and a keyhole is formed which enables 

a higher weld depth than weld width (compare Fig. 3(a) with 

Fig. 3(b)). The different melt pool dynamics result in different 

seam topographies (see Fig. 3(a) and Fig. 3(b) middle). In heat 

conduction welding less excessive weld (weld protrusion) can 

be found in comparison to deep penetration welding. Deep 

penetration welding reaches a higher amount of absorbed laser 

radiation due to multiple reflections in the keyhole. As a 

consequence, higher temperatures can be achieved in deep 

penetration welding than in heat conduction welding. 

Presumably, thermal warping might support excessive weld 

metal during solidification. Additionally, the formation of a 

bulge by the keyhole might support the solidification at an 

elevated position.  

The difference in weld topography gives rise to the 

separation of both weld regimes.  

As a feature for weld regime classification, the feature with 

the lowest p-value is chosen. For separating the weld regime, 

the autocorrelation with lag 2 (acl2) is identified with a p-value 

of 1.25  10−38. This very low p-value indicates a very good 

separability of the weld regimes. The autocorrelation with lag 

acll calculates the autocorrelation of the time series S with its 

lagged version of lag l [20]: 

𝑎𝑐𝑙𝑙 =
1

(𝑛−𝑙)𝑠2
∑ (ℎ𝑖 − ℎ̅)(ℎ𝑖+𝑙 − ℎ̅)𝑛−𝑙

𝑖=1 . (2) 

Here, n is the length of the time series, ℎ̅ is the mean height 

of the time series and s2 is the standard deviation.  

The autocorrelation is a mathematical representation of the 

degree of similarity between a time series and a lagged version 

of itself. A positive or negative value of 1 represents a perfect 

correlation between the current value and the lagged value. 

Fig. 3(c) shows the feature values of acl2 over the two 

classified weld regimes for the entire set of parameters under 

consideration. Values higher than 0.424 are classified as deep 

penetration welds, whereas values below 0.424 are classified 

as heat conduction welds according to the maximum identified 

value in the heat conduction regime. High positive values can 

be interpreted as a measure of the persistence of data points 

separated by this lag to stay above or below the mean value of 

the signal. A lower value indicates that the data points 

separated by this lag alternate close to the mean value. As 

welds in the heat conduction regime result in less excess metal, 

the mean height above the reference value alternates around a 

low mean value. This results in lower autocorrelation values 

close to zero in comparison to deep penetration welds. In the 

deep penetration welding regime, excessive weld metal with 

higher mean values can be seen and melt ejections are 

possible. Melt ejections lead to a height profile, where the 

height values change in tandem because of negative height 

values due to missing material in the weld seam as well as 

added material by spatter on top of the weld seam. In 

consequence, the autocorrelation function shows higher 

positive values. 

B.  CLASSIFICATION OF HUMPING 

The separation between humping and no humping allows for 

addressing the problem of unregular surface topography. Fig. 

4(a) depicts an example of a weld with humping. Here, the 

characteristic recurring surface structures can be seen along 

the weld (see Fig. 4(a) top; blue arrows), which are 

accumulations of melt in the form of droplets. The shown weld 

has a weld depth of 214 µm and a weld width of 345 µm, 

where the droplet exceeds the surface by 91 µm. The aspect 

FIGURE 4.  Results for the classification of humping. At the top of (a), the cross-section (top right) and a top view (top left) are shown for an 
exemplary weld with humping. Humps are highlighted at the top view (a) (top left) with blue arrows At the middle section of (a), a corresponding heat 
map shows the 2D height profile at reference level (green) with height deposits (yellow, red) and voids (blue) as a distance from the reference line in 
pixel. This measurement information is transformed into a 1D height profile for a characteristic weld with humping. (b) shows the identified feature for 
humping classification (autocorrelation lag 6) based on the given 1D height profile data from all included laser process parameters. Weld seams in the 
heat conduction regime (green) could not be clearly separated from welds with humping (red) (b). 
 j 
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ratio results to be 0.62, which indicates a heat conduction 

weld. However, as humping occurs at the border between heat 

conduction and deep penetration welding, humping also could 

be found in the deep penetration regime. The height profile in 

Fig. 4(a) shows that the recurring surface structure can be 

identified by the inline measurement system. 

Autocorrelation with a lag of 6 (acl6) is identified as a 

feature for the classification of humping (see also (2)). This 

feature is extracted with a p-value of 3.97  10−15 and hence 

also shows a good statistical capability for separating 

topographies with humping and without humping. Positive 

values for autocorrelation with lag 6 can be identified for deep 

penetration welds with spatter and without spatter (see Fig. 

4(b)). These values tend to show similar results for the 

classification of weld regimes. Values close to 0 can be 

considered heat conduction welds. Negative values can be 

correlated with humping welds. Values between 0 and -0.085 

show an overlap for the classification of humping and no 

humping. Here, heat conduction welds are identified to be 

classified for no humping in the overlap region. Humping can 

be clearly separated if the autocorrelation function is 

below -0.085. The autocorrelation lag acl6 for welds with 

humping is influenced by a change in the frequency of the 

droplet occurrence. Depending on the laser parameters, 

humping shows different frequencies of recurrence of the 

molten droplets. If the humping frequency is very high, the 

weld tends to show similar topographical features for 

autocorrelation with lag 6 (acl6) like a regular heat conduction 

weld. A low humping frequency can be considered pre-

humping [5], which is characterized by surface waves with 

small amplitudes and hence increases the absolute acl6 value. 

The change in humping frequency influences the clear 

separation between humping and heat conduction welding. 

Nevertheless, this feature shows its ability in the separation of 

deep penetration welding regime without humping from welds 

with humping. 

C. CLASSIFICATION OF SPATTER 

In the deep penetration welding regime, spatter might occur 

which may negatively affect surrounding components. Spatter 

is characterized either by a height deposit on top of the weld 

or by a melt ejection from the weld seam. The latter can be 

represented as a remaining surface pore. Fig. 5(a) shows a 

regular deep penetration weld in comparison to a weld with 

spatter (see Fig. 5(b)). The heatmap in Fig. 5(b) clearly 

indicates height deposits in red, while showing melt ejections 

in blue. The 1D height profile supports this view (see Fig. 

5(b)) and shows its applicability for the identification of such 

spatter events. 

The most suitable feature for a binary separation between 

spatter and deep penetration welds with no spatter is the root 

mean square rms with a p-value of 3.88  10−47. This feature 

can be calculated from the addition of the squared height 

values hi of the 1D height profile and division of the length of 

the height profile n [20]: 

𝑟𝑚𝑠 = √
1

𝑛
∑ ℎ𝑖

2𝑛
𝑖=1 . (3) 

Fig. 5(c) shows the height root mean square rms for welds 

with spatter and without spatter. No spatter can be found if 

the root mean square is below 10.05. Contrary, a root mean 

square above 10.05 indicates weld seams with spatter events. 

The higher the height root mean square, the more spatter can 

be found. A clear separation is only possible in the case of 

deep penetration welding and heat conduction welding with 

no humping as humping shows overlap with the height root 

mean square of welds with spatter up to a value of 17.02. 

Nevertheless, this feature enables a classification of 

undesired weld status. 

D. PROOF OF CONCEPT 

In conclusion, we identified three different features which 

enable the classification of weld status based on surface 

FIGURE 5.  Results for the classification of spatter. At the top of (a) and (b), top views are shown for an exemplary deep penetration weld with no 
spatter (a) and an exemplary deep penetration weld with spatter (b). At the middle section of (a) and (b) corresponding heat maps show the 2D height 
profile at reference level (green) with height deposits (yellow, red) and voids (blue) as a distance from the reference line in pixel. This measurement 
information is transformed into a 1D height profile for a weld seam with no spatter (a) and with spatter (b). (c) shows the identified feature for spatter 
classification (root mean square) based on the given 1D height profile data from all included laser process parameters. 
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topographical information from the weld seam. To show the 

proof-of-concept for possible quality assessment with features 

extracted from surface topographical data with FRESH 

algorithm, we compare two different welds regarding the 

identified limits for the features (see Table 2). Heat conduction 

welding can be found for autocorrelation with lag 2 below 

0.424. Humping can be found for autocorrelation with lag 6 

below 0. Spatter can be identified for a root mean square above 

10.05. As exemplary welds, we choose a weld with spatter 

(exemplary weld 1, power 4000 W, welding speed 2 m/min) 

and a weld in the heat conduction regime (exemplary weld 2, 

power 3000 W, welding speed 30 m/min). Both welds can be 

clearly classified to each target. The exemplary weld 1 with 

spatter shows a height root mean square value of 44.62 which 

is an indicator for spatter. The other features, autocorrelation 

lag 2 with a value of 0.66 and autocorrelation lag 6 with a 

value of 0.39 show that no humping is present and that the 

weld is in the laser deep penetration regime. The example for 

weld 2 (heat conduction welding) shows an autocorrelation 

value with lag 2 of 0.37 which identifies heat conduction 

welding as a welding regime. The other features, root mean 

square with 2.49 and autocorrelation value with lag 6 of 0.00 

show that no humping can be found, and no spatters are 

identified. 

 
TABLE II 

PROOF OF CONCEPT  

Target Feature Limit 
Weld 1 

(spatter) 

Weld 2 

(heat 

conduction 
weld) 

Heat 

conduction 

welding 

Autocorrelation 
lag 2 

< 0.424 0.66 0.37 

Humping 
Autocorrelation 

lag 6 
< 0 0.39 0.00 

Spatter 
Root mean 

square 
> 10.05 44.62 2.49 

 

This shows the feasibility of the FRESH algorithm to 

identify relevant features for weld quality assessments based 

on inline OCT data of the weld seam topography. As the 

features for the classification of humping and spatter show an 

overlap region, it is recommended to use a combination of 

these features to improve the false discovery rate in the case 

of quality assessments. The identified values are bound to the 

specific resolution of the measurement system. A change in 

measurement frequency by changing the scanning speed or the 

number of measurement points will have an impact on the 

identified limits and relevance of the features. The resolution 

of the measurement system in x-direction must be lower than 

the size of the surface structure under observation to allow a 

classification. An improved resolution may result in a better 

separability. However, the separability will remain as each 

welding phenomenon shows specific characteristics regarding 

the surface topographical structure size and tendencies in 

process parameters.  

The accuracy of the method in terms of separability of weld 

categories could be further increased by improving the feature 

selection process. A detailed discussion of possible different 

machine learning pipelines for improving the accuracy can be 

found in the literature [19]. Suggested improvements for 

feature selection are the combination of FRESH with a 

principal component analysis (PCA) to avoid the 

consideration of highly correlated features. This is relevant as 

the selection of the most significant feature does not 

necessarily result in the best feature for a classification task, 

especially when the most significant feature shows similar p-

values towards other relevant features. A further 

implementation of classifiers (e.g., AdaBoost, random forest 

classifier) in the machine learning pipeline can lead to 

improved accuracy for the classification task [19]. However, 

the number of considered features is limited by the given 

algorithm and hence may also limit the separability. Future 

alternative feature engineering tools should be considered for 

application, even though FRESH includes a brought set of 

features and resulted as the best solution for time-series feature 

selection in a benchmark [18].  

IV. CONCLUSION 

In this report, experimental work was performed with a vast 

variety of process parameters for the classification of weld 

conditions in the context of laser welding of copper. The 

topography was measured inline with an OCT system to 

identify the height profile of the weld seam. The FRESH 

algorithm was used to identify features for weld classification 

depending on the weld regime (deep penetration welding/heat 

conduction welding), the occurrence of spatter or humping. 

Features were discussed for their applicability for weld 

process categorization under consideration of process physics. 

It was shown that each classification results in a feature that 

allows a separation between spatter, humping, and welding 

regime due to the specific resulting surface topographies of the 

weld seam. Some features showed an overlap for specific weld 

conditions. A combined application of the features can be used 

to avoid false detections and to identify defective welds. 

Consequently, this enabled a proof-of-concept for inline 

monitoring of the laser welding result based on surface 

topographical information that can be classified with the help 

of the FRESH algorithm. We expect these findings to be 

beneficial in the future for any manufacturing process in the 

context of quality monitoring. Future work will be necessary 

to identify limitations of our method in the case of changing 

measurement resolution, weld conditions, and targets under 

investigation (e.g., pores, oxidation). 
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